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Random-field-induced rounding of the Ising-type transition in 
physisorbed (C0)1-,(Nz), mixtures: Monte Carlo studies of 
a simple model 

Victor Pereyrat, Peter Nielaba and K Binder 
lnstitut f i r  Physik, Johannes-Gutenberg-Universi~ Mainz, D-55099 Mainz, Staudinger Weg 
7, Federal Republic of G e r m y  

Received 18 May 1993 

Abstract. We propose a simple model for ( C O ) I - ~ ( N ~ ) ~  mixtures adsorbed on graphite. where 
a lattice site canies a spin S; = *I representing the orientations of Ihe C O  electric dipole 
moment if the site is occupied by a CO molecule, while the spin S; = 0 if the site is taken by 
an NI molecule, which has a quadrupole moment only. Assuming a bilinear dipolequadrupole 
coupling, randomly quenched Nz impurities then act as random fields would au on an king 
antiferromagnet. For simplicity, a square lattice is Vented and the range of all interactions 
is restricted to nearest neighbours. Monte Carlo studies are performed for a range of lattice 
linear dimensions L from L = 24 lo L = 50, and lhe specific heal, order parameter and 
susceptibility, as well as the fourth-order cumulant. are studied, applying finite-size scaling 
cancepls where appropriate, Our specific heat results display a striking qualitative similarity 
lo the experimental data of Wechert and Arlt, and provide evidence that the transition is 
already rounded by arbiarily small dilution. Consistent with theoretical predictions for the two- 
dimensiond random field king model. While the experiments needed lo rely on the specific 
heat only. our data for the (strongly rounded) ordering susceptibility and the cumulant (where 
lhe common intersection point disappears, consistent with the absence of a transition) provide 
compelling evidence for this picture. The mssover scaling analysis firs1 proposed by Femira 
et nl for dilute antiferromagnets in a field also works out reasonably well for the present model. 

1. Introduction: overview and motivation for the model 

The statistical thermodynamics of systems with randomly quenched disorder is a real 
challenge for theory (Stinchcombe 1983, Imry 1984, Binder and Young 1986, Villain 1985, 
Nattermann and Wllain 1988, Young et al 1992, Binder and Reger 1992). Particularly 
striking phenomena are predicted in reduced dimensionality, such as the destruction of 
long-range order of king-type systems in d = 2 dimensions by arbitrarily weak random 
fields (Imry and Ma 1975, Morgenstern et al 1981, Villain 1982, Grinstein and Ma 1982, 
Binder 1983); see figure 1: making use of fluctuations of the excess of the random field 
of one sign in subvolumes of the system, a kind of irregular ‘Chinese box’ pattern with 
domains inside domains is stabilized, with pronounced roughness of the walls induced by 
the random field even at zero temperature. This absence of true long-range order also 
shows up in a rounding of the transition even by very weak random fields (see, e.g., 
figure 2). While this mechanism had been confirmed by beautiful experiments for dilute 
quasi-two-dimensional anisotropic antiferromagnets such as Rb~C0o.s5Mg~.,~F~ (Ferreira et 
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Figure 1. Ground-swte domain pattern of the two-dimensional Ising lattice in a small mndom 
magnetic field (schematic diagnm). Arrows indicate orientztions of the domains. Noce that 
in reality the domain walls also exhibit irregular roughness, which is not shown here. From 
Morgenstem e fa l  (1981). 

al  1983), it had never been confirmed for genuine real two-dimensional phase transitions 
such as occur in adsorbed atomic monolayers at surfaces (Dash 1975, Sinha 1980, Dash 
and Ruvalds 1980, Einstein 1982, Binder 1993), until a recent experiment on (CO),-,(N~)~ 
mixtures (Wechert and Arlt 1993). Pure CO adsorbed on grafoil at a coverage such that 
the .J? x .J? R30" phase commensurate with the graphite structure occurs undergoes a first 
transition from the orientationally disordered solid at high temperatures to the herringbone 
structure (2& x & R30") at T"(C0) 2 25 K Vou and Fain 1985) and an analogous 
transition occurs for NI at T"(N2) 2: 28 K @iehl and Fain 1983). Figure 3(a) indicates 
schematically the quadrupolar ordering of this 'herringbone phase'. Now CO also exhibits 
a small electric dipole moment, and hence one interprets the transition at T, N 5.4 K 
(Inaba et a1 1988) or T, = 5.18 K (Wechert and Arlt 1993) as an (antiferroelectric) head- 
tail ordering of the electric dipoles of the CO molecules, see figure 3(b). We emphasize 
that this interpretation of the structure shown in figure 3(b) is speculative, and that other 
structures of the electric dipole moments are conceivable as well. In fact, plausible models 
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for the interactions may lead to fenielectric structures (Marx et al 1993). However, at this 
point this problem is not solved, and for simplicity we shall only consider an antiferroelechic 
structure in the following. 

Very weak dilution of CO with Nz molecules (concentrations of 3% or less) produce 
a strong rounding of the specific heat anomaly of the transition at G (Wiechert and Arlt 
1993) while the herringbone ordering at higher temperatures should be affected relatively 
little by dilution: the diatomic molecules CO and N2 are isoelectronic, and have the same 
mass, and about the same size; only their quadrupole moments differ (the moment of CO 
is about a factor of 1.3 larger than that of Nz, see You and Fain 1985). Assuming that 
the quadrupole moment and dipole moment of the CO molecules are linearly coupled, one 
would obtain from the quadrupolequadrupole interaction between Nz and CO an effective 
random field acting on the CO dipole moments. Note that we do not imply, of course, that 
interactions of any electrostatic origin dominate-van der Waals forces between the atoms 
may lead to pseudodipolar or pseudoquadrupolar terms as well. 

Symbol - 
0 
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0 

* 

I I t 
I 2 3 

k, TIJ 
Figure 2 Specific heat plotted versus temperature for the nearest-neighbour Ising square lattice 
with exchange constant 3 exposed to mdom fields *hp for a 12 x 12 system averaged over 30 
configuntions of the mdom field. using exact transfer matrix methods. Different curves refer 
to different values of h f J  as indicated in the figure. From Morgenstem er al (1981). 
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Figure 3. (U) Schematic arrangement of the molecule 
orientations in one domain of the herringbone s w c -  
ture, wherr the centres of gravity of the molecules form 
a regulx triangulv lattice. (6)  Generalized antiferro- 
electric structure that may occur in CO physisorbed on 
graphite and already ordered in the herringbone orien- 
otional structure. (c) Random dilution of the Structure 
of case (b) with Nz (open circles). which has no dipole 
moment. 

C )  

Now the physical origin of such a coupling is not completely clear. If the quadrupolar 
ordering in the mixed system (CO)I-,(NZ)~ is not at all disturbed by the dilution 
(figure 3(c)) ,  one could also expect that the effect of dilution is simply to randomly 
remove spins, and then the problem would be equivalent to that of a randomly diluted king 
antiferromagnet (or ferromagnet, respectively) without a random field. In such systems the 
specific heat sometimes seems to be strongly rounded even if long-range order still occurs 
(Stichcombe 1983). If the quadrupolar ordering is disturbed by the dilution, one might 
expect bilinear terms coupling the quadrupole moment tensor fy of a molecule at site i 
and the tensor &(z) of elastic strain (Michel 1987a-c). 

Since random elastic strain fields are discussed as a mechanism of creating orientational 
glasses (Michel 1987a-c, Binder and Reger 1992), it could be that in the diluted system 
a picture of the type shown in figure 1 should be drawn even for the quadrupolar order 
at temperatures above T, in the mixed system. Since, then, the dipolar long-range order 
established at T, is limited in range by the typical domain size of the quadrupolar order, 
the rounding of the specific heat seen at T, in the experiment would be a kind of finite-size 
rounding Fisher 1971, Privman 1990, Binder 1992a, b) by which one indirectly measures 
the random-field rounding of the orientational transition at T,(CO). 

A first-principles derivation of the effective Hamiltonian of the mixed system 
(CO)I-,(NZ)~ would be very desirable but is far beyond the scope of the present work. 
For simplicity, we assume that it is the first mechanism that is operative, and describe the 
system by a simple square lattice, disregarding the actual sublattice structure of figure 3. 
Associating an king spin S; = i l  with a CO molecule at site i and Si = 0 with an Nz 
molecule at the site, we arrive at the following simplified model Hamiltonian: 

H=t+CJSis , -cJ 's ; ( l  -S;)-cJ"sf(l-S;). (1) 
(41) (i.1) (i.1) 
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Figure 4. Specific hear C per lattice site plotted versus TIJ (choosing ks = I), for L = 24 
and various choices of J'JJ as indicated in the figure. 

Here J is the interaction between the nearest-neighbour pairs of spins (pseudo-dipole- 
dipole interaction), J' the hypothetical pseudo-dipolequadrupole interaction, while J" is a 
pseudo-quadrupolequadrupole interaction. For simplicity, we choose J" = 0 in the results 
presented here, but we have checked by preliminary calculations that the opposite choice 
J" # 0, J' = 0 would not yield results similar to the experimental data, and that long-range 
order remains for small impurity concentrations then, as expected. In the model (1). the 
sites j taken by Nz produce a field randomly, sometimes on a site in the sublattice where 
the spins are up and sometimes on a spin in the sublattice where the spins are down (for 
J > 0 where we have an antiferromagnetic ground state). 

This model is studied by Monte Carlo methods as is described in section 2, while 
section 3 applies a crossover scaling analysis as is appropriate for the king problem in a 
random field (Fishman and Aharony 1979, Ferreira el al 1983, Binder 1984). Section 4 
summarizes some concluding remarks. 

2. Monte Carlo results 

We used square lattices of sizes L = 24, 32, 40, 50 with periodic boundary conditions 
and different impurity concentrations x. Averages have been taken over 1OC-200 different 
configurations of the impurity distribution over the lattice for each x. Typically, systems 
were equilibrated with runs of a duration of 2.5 x IO4 Monte Carlo steps (MCSs) per site, 
while 'measurements' were taken over the subsequent period of 2.5 x lo4 MCS/spin. With 
this fairly moderate effort (all calculations were done at IBM RISC 6000/320 workstations) 
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Ising-rype transition in physisorbed (CO)~- , (NZ) ,  6637 

0.8 

0.6 

0.4 

0.2 

m 
Y - 

e A - ._ 
- 

x- ................ * ........... - .Y . .  ........... x 

- 

- 

- 

- 

- 

- - 
, , 

x 
E" 

U 

Figure 6. Checking for finite-size effecw by a plot of the maximum value of the specific heat 
C-lke versus In L for severd impurity concenuations. 

it would not make any sense to by histogram techniques or other sophisticated simulation 
analysis methods. Due to the need of averaging over a large sample of configurations of 
the impuri:y sites, such techniques are less useful than for pure models (D'Onorio De Me0 
1992). We emphasize again that the present work does not aim at a 'high-resolution study' 
of critical phenomena, but rather at a qualitative exploration of a model that is new and 
interesting. 

Figure 4 shows the effect of varying J ' / J  for an impurity concentration (x = 0.04) 
where in the experiment strong rounding of the specific heat would already be observed. 
Due to the choice of a finite lattice size ( L  = 24 here), the data for J ' / J  = 0 are also 
rounded. For all other values of J ' / J  # 0 shown here, however, the rounding due to the 
random field by far exceeds the finitesize rounding. In order to qualitatively reproduce the 
experimental trends, we have hence decided to work typically with J ' / J  = 2. Figure 5 
shows typical data for various impurity concentrations and lattice sizes. While some finite- 
size effects are still seen for very small impurity concentrations, no significant effects occur 
for x 2 0.01 and L > 32. This is also evident from figure 6 where the maximum value of 
the specific heat is plotted versus In L for the various impurity concentrations investigated. 
Note also the remarkable qualitative similarity of figure 5 and figure 2. 

Figure 7 analyses the order parameter for various sizes and impurity concentrations. 
While for the range of available lattice sizes the system at low temperatures is always 
well ordered for x < 0.010, we see a distinct decrease of the absolute value of the order 
parameter with increasing size for x > 0.015. We actually expect, alluding to figure 1, 
that in a sufficiently large system the order parameter will average to zero, and figure 7 is 
not incompatible with this hypothesis. In fact, we speculate that the same trend could be 
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Figure 7. Absolute value of the order p m e t e r  plotted versus temperature for L = 24 (a) ,  
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indicated. 
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Figure 8. Ordering Susceptibility ,y = L2((!b2) - (1)1)2)/T plotted versus temperature for 
L = 32 (a )  nnd L = 50 (b). Different symbols show various values of x as indicated. 



Ising-rype transition in physisorbed (CO)I-,(N~)~ 664 I 

seen for the smaller values of x as well, if we were to study larger system there, which 
would require huge computer time since then much longer runs would be needed because 
of critical dowing down. 

This interpretation is also corroborated by the behaviour of the ordering susceptibility 
(figure 8) and the fourth-order cumulant (figure 9). One can clearly recognize that the 
susceptibility peak becomes more rounded and shifts to lower temperatures as x increases. 
There are some irregularities in these curves, indicating that due to the huge statistical 
fluctuations the desired accuracy has not quite been reached. The cumulants (figure 9) 
no longer exhibit any unique size-independent intersection point, unlike the well known 
behaviour of pure systems (Binder 1992a. b). Sometimes there seems to be an intersection 
point for small sizes, but it should not be mistaken as an estimate for T,, since for larger 
sizes the cumulants become smaller with increasing size. These findings all are mutually 
consistent with each other and with the interpretation that the transition present in the pure 
system is rounded by the random field. 

3. Crossover scaling analysis 

Following Fishman and Aharony (1979) the crossover from the critical behaviour of the 
pure system ( x  = 0) to the new behaviour can be described by a scaling theory. Just as 
there is a scaling behaviour with a uniform ordering field H in a pure system 

C = l t [ -*CH(tH-*)  A = y + fi  (2) 

where t = 1 - T/T,, and 01, p ,  and y are the standard critical exponents of specific heat, 
order parameter, and susceptibility, there is a similar scaling with the random field amplitude 
h in the random field Ising model (one considers the case where the configurational average 
[hi],, = 0 while [h?], = h2), namely 

c = ~ t ~ - ~ I ? k ( Z b - * ” )  (3) 

where the crossover exponent 6 = y .  the susceptibility exponent of the pure system. By our 
notation cH, t k  for the scaling functions we have expressed the fact that these are different 
functions, of course. For the two-dimensional Ising model, all exponents are exactly known 
(Baxter 1982): 01 = 0, p = $, y = 3. The logarithmic specific heat divergence implied by 
01 = 0 actually means that (2) and (3) also need modifications by logarithmic terms, namely 

C = I?~(t f f - ’ )  - (A/A) In H f + 0 H + o I C ~ ~ Y - ~  finite (4) 

01 

c = t h ( t / ~ - ~ / + )  - ( z A / @ )  I n h  r 4 o h -+ o lrlh-’/+ finite (5) 

where A E 0.4945 is the exactly known specific heat amplitude of the pure system (Onsager 
1944). 

Now the problem arises of how we can translate the randomness of our Hamiltonian (1) 
to the ‘random field’ considered in the theory. The standard assumption is that one simply 
equates the configurationally averaged moments, noting that for an antiferromagnet we need 
to consider a random staggered field rather than a random uniform field. Due to the phase 
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factor (-l)f+k, where l ,  k are the x ,  y coordinates of the lattice site i, the random staggered 
field acting on site i due to the second term on the right-hand side of (1) is 

hi = (-l)l+kJ'E(l - Sj') [hi]." = (-l)'+kJ'zx (6) 

z being the coordination number of the lattice, remembering that the sum over j in (6) runs 
over the nearest neighbours only. If we average (6) over the lattice sites, [hi].v vanishes 

j 
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due to the phase factor. However, for hf we find 

h: = J ' * X ( l  - S:) c(l - S;) 
I j' 

[h:], - [h,& = J'?z2x(1 - x ) .  (7) 

From this consideration one may identify the random field amplitude h as zJ'J-. 
For n = 0.01 we thus have h Y 0.4J', and comparing figures 2 and 4 this is not 
unreasonable, considering that this mapping is clearly approximate because it  disregards 
the disorder effects on the king exchange term. From (5 )  and (7) we thus expect 

C,, = constant - (A/@) ln[x(l - x ) l  (8) 

and this relation is tested in figure 10. While the data are nicely compatible with a 
logarithmic variation, the constant in front of the logarithm is a factor of about 1.5 too 
large. In the direct study of the two-dimensional random field king problem the theoretical 
constant could roughly be verified, however, (Binder 1984), and also in the experiment 
the correctness of (8) was verifed (Wiechert and Arlt 1993). Probably in our case the 
discrepancy is due to the fact that we work at somewhat too high concentrations, such that 
non-critical background terms affect our estimates. 

In figure 11 we present a full crossover scaling plot of our specific heat data, in order 
to test ( 5 )  more directly. Here we redefine f as (TIT, - l), where T, is the temperature of 
the specific heat maximum, following previous practice (Ferreira et al 1983, Binder 1984, 
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Wiechert and Arlt 1993). Thus the scaling function C*[ t (h /J ) -* f l ]  plotted in figure 11 is 
defined as ( k ~  = 1) 

C* = C + A* In(h/J) (9) 

where we simply take h / J  = ,/- here, omitting the constant zJ'/J which is 0.8 in 
our case. It is seen that a reasonable confirmation of crossover scaling is obtained, of similar 
quality as in the recent experiment of Wiechert and Arlt (1993), and over a somewhat wider 
range of fields than in the direct study of the random field Ising model (Binder 1984). This 
is understandable since here we use distinctly larger lattices. 

4. Concluding remarks 

In the present work, we have postulated a simple model of the random field king model 
type, in order to model the rounding of the phase transition from the paraelectric phase to the 
antiferroelectric phase in (CO)j-,(N& monolayers physisorbed on graphite. Our choice 
of model Hamiltonian is strongly motivated by the corresponding experimental results of 
Wiechert and Arlt (1993). while a more rigorous justification for this type of model is 
still lacking. Given our model, the experimental findings of Wiechert and Arlt (1993) are 
qualitatively reproduced. From the construction of our model it is extremely likely that 
it must satisfy the crossover scaling behaviour predicted by Ferreira et a1 (1983) along 
the lines of Fishman and Aharony (1979). Apart from the problem that we must use 
an effective critical amplitude A* instead of the theoretically predicted one, the crossover 
scaling description is reasonably well verified. We attribute this problem to our numerical 
limitations (critical slowing down and finite-size effects prevented us from the study of 
somewhat smaller x )  rather than to any fundamental effects. 

Of course, it would be very interesting if one could justify (1-r another suitable 
effective Hamiltonian-from a more realistic treatment of the interactions, perhaps following 
the line of the lattice dynamical methods of Michel (1987a-c), or by a Monte Carlo study 
of a fully atomistic model based on suitable pair potentials. Also a study of the analogous 
problem in d = 3 dimensions, where a sharp phase transition should remain for weak 
dilution, might be rewarding. We hope to report on such extensions in future work. 
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